Алгоритм действий для привлечения посетителей в музей

От идей к реальным бизнес-возможностям

При помощи упомянутых выше технологий будет собираться огромное количество новых полезных данных. Есть множество возможностей превращать эти новые данные в ценность. Например:

  • Триангуляция данных. Все методы сбора данных на пяти стадиях подвержены предвзятости. Использовав одновременно несколько техник на протяжении пяти стадий, можно получить более точный анализ и сделать правильные выводы.
  • Кастомизация коллекции. Собранные данные дают музею представление о предпочтениях потенциального рынка. На основе этого музей может подстраивать текущую коллекцию и проектировать предстоящие специально так, чтобы привлекать больше пользователей.
  • Существующие источники данных. Существует огромное множество источников данных, доступных за пределами музея, которые тоже можно использовать. Например, что если связать погодные условия с эмоциями?
  • Новые метаметрики. В этой статье мы изучили новые метрики для измерения успеха коллекции. Объединив эти метрики с другими датасетами, можно получить новые метаметрики. Например, согласно теории обучения, чтобы выучить что-то, студент должен рассмотреть несколько примеров. Может ли это значить, что когда посетитель обратил внимание на [y] экспонатов как минимум [x] секунд, он чему-то научился?
  • Сравнение с другими музеями. Сгенерированные данные в одном музее можно сравнивать с данными других музеев. В каком музее на посетителей оказывается наибольшее эмоциональное воздействие? Как одну и ту же картину рассматривают в разных музеях?
  • Применение в разных секторах. Технологии, описанные в этой статье, могут быть полезными и бизнесменам в других секторах. Почему бы не идентифицировать эмоции в магазинах одежды? Или не определять сердцебиение сотрудников на рабочем месте?
  • Механизм рекомендаций для посетителей. Собранные о посетителе данные могут быть полезными не только музею, но и самому посетителю. Например, на основе его предпочтений вы можете предлагать ему предстоящие выставки.
  • Умное искусство. Как уже было сказано ранее, художники могут использовать новые данные для анализа эмоционального воздействия их работ. В то же время они могут использовать технологии для создания интерактивного искусства.

Плата за просмотр

Поскольку технология распознавания лиц может определять, на какие произведения искусства посетитель обращает внимание, мы сможем взимать у него деньги лишь за картины, на которые он хочет посмотреть. Если регулярный входной билет стоит € 20, человек будет платить по € 1 за просмотр одной картины. Если его интересуют более 20 картин, ему просто придется купить входной билет стоимостью € 20, не больше.

Ключевое преимущество этой модели заключается в том, что она будет привлекать посетителей, которые хотят посмотреть лишь на несколько картин.

Принятие этой модели может также повлиять и на другие аспекты индустрии искусства. Умный музей сможет арендовать экспонат у третьего лица и платить за него в зависимости от количества просмотров. В то же время она позволит художникам получать проценты от просмотров, как это происходит сейчас на YouTube или Spotify.

Фото: Pexels

С чего начать

Следуйте указаниям:

  • Начните с проектирования эксперимента, цель которого – решить прямую проблему для вашем музее и желательно для конечного пользователя.
  • Выделите в здании небольшую зону, где сможете тестировать технологии.
  • Объясните, почему данные собираются, как они собираются и защищаются и что вы намереваетесь с ними делать.
  • Начните со сбора данных, которые не связаны напрямую с личностью посетителей.
  • Верните ценность конечному пользователю. Он тоже должен получать выгоду от участия в вашем эксперименте.

Источник.

 

Начало новости здесь